Fire subchapter of Entity Guidelines: past work and new directions

Dr. Shawn Urbanski, Dr. John Shaw, Dr. Karin Riley, Rachel Houtman, and Scott Zimmer

Rocky Mountain Research Station, US Forest Service

Level 1 approach from 2022 update of the USDA's 2014 report *Quantifying Greenhouse Gas Fluxes in Agriculture and Forestry: Methods for Entity-Scale Inventory*

- Objective: provide methods and guidance on estimating greenhouse gas (GHG) emissions and carbon removals associated with entity-level activities in managed forest systems, including wildfire and prescribed fire.
- Timeline for *fire subchapter* completion was 3-4 months, and approach was thus simple
- Our contribution was limited to <u>direct</u> GHG emissions from consumption of live and dead fuels

2022 Level 1 method summary for fire

- Leveraged field data from Forest Inventory and Analysis (FIA) to establish pre-fire pools
- Two main sectors that produce smoke emissions:
 - Litter, duff, and down dead wood biomass: DWM (Downed Woody Material) Table
 - Live and dead trees: TREE Table records of individual tree species, diameter, height and status (live or dead)

2022 Level 1 method summary for fire

- Ran FFE-FVS for 49,000 FIA plots for the 5 fire schemes = 245,000 runs
- Extract simulation results satisfying fire severity categories, sometimes tuning burn conditions to meet the severity criteria
- Aggregate runs by fire severity, forest type group, and region

Fire Activity	Description
Low-severity wildfire/prescribed fire	< 20% tree mortality
Moderate-severity wildfire	40–60% tree mortality
High-severity wildfire	>90% tree mortality

2022 Level 1 results for fire: variation across forest type and region

Douglas-fir forest type group

Ponderosa pine forest type group

2022 Level 1 results for fire: uncertainty and variability

Douglas-fir forest type group

2022 Level 1 results for fire: how to use Excel workbook

USER INPUT

- Type of forest management treatment 'Fire (prescribed or natural)'
- U.S. Region (from drop-down menu)
- Forest Type Group (from drop-down menu)
- Planted or natural forest origin
- Age class

Excel Workbook created by Andy Lister, USDA Forest Service

RESULTS

	А		В		с	D		Е		F	
1											
2	Emissions	from immediat	e combustion	of forest bioma	ass by fire severity s	scenario.					
3	Note these numbers do not reflect a projection of future GHG flux due to the fire event (e.g., post-fire regeneration of forest biomass).										
4		High Severity Fire mortality)	emissions (100%	Moderate Seve	rity Fire (50% mortality)	Low Severity Fire / Prescribed Burning (10% mortality)					
5	t CO ₂	1.1.1	1,967		1,111	676					
6	t N ₂ O (t CO ₂ eq)		50		28	17					
7	t CH4 (t CO2 eq)		216		122	74					
8	Total t CO₂eq	2,234			1,262	767					
9							Γ,				
10 11 12 13 14 15 16 17 18	Léann nedil Branc Traie traik Own wood debri Uiter	Before	During Low-Severity Fire	After 10% Mortality		Parameters chosen: Rocky Mountain North Oak / pine group 21-40 years Natural					

- Tons of CO₂, N₂O, and CH₄ as CO₂-eq
- Reported mean for low, moderate and high severity fire

Main advantages of the approach

- Tractable during short time limit for project
- Leverages field data
- Grouping by forest type, region, and severity allows some amount of specificity, as well as comparisons across these factors

Gaps

- Limited to *direct* GHG emissions from consumption of live and dead fuels and did not consider post-fire carbon fluxes:
 - Decay of trees killed by fire
 - Forest regeneration
 - Avoided wildfire emissions following fuel treatment via prescribed fire
- Did not compare treated and untreated stands
- Did not consider fire risk (i.e. probability of burning at various intensities)
- Was not explicitly spatial and did not allow summary by an Area of Interest or property boundary

Author contact:

Dr. Shawn Urbanski: <u>shawn.p.Urbanski@usda.gov</u> Dr. John Shaw: <u>john.d.shaw@usda.gov</u> Dr. Karin Riley: <u>karin.l.riley@usda.gov</u> Rachel Houtman: <u>rachel.houtman@usda.gov</u>

