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Climate Change Impacts on Indiana Agriculture 
Agriculture is a critically important aspect of economic and social life across Indiana. As of the 2022 Census of Agriculture, the 
state has approximately 53,600 farms with a total of 14.6 million acres of farmland.1 In 2022, the market value of agricultural 
products sold totaled more than $18 billion, which ranks 9th nationally.1 Indiana ranks 5th in the nation for grain production, 
with the common grain crops being corn, soybeans, and wheat.1,2 Indiana is also national leader in ethanol and biodiesel 
production, ranking #6 in gallons of ethanol produced in 2022.3 Livestock production is focused on hogs/pigs ($1.9 billion, 
ranked 6th), poultry/eggs ($2.6 billion, ranked 10th), equine ($50 million; ranked 9th), and milk ($1.1 billion, ranked 15th).1 

Indiana is also a state with a strong specialty crop industry. Fruit & tree nuts bring in $25.3 million annually, and vegetables 
bring in another $223.6 million as of 2022.2 

Like other regions in the United States, agricultural productivity in Indiana is vulnerable to weather and climate variability. In 
recent decades, changes in Indiana’s climate, including temperature and precipitation variability, have emerged, with 
continued change expected in the future. Although some of these shifts may appear minor now, agriculture is already being 
impacted by observed climate changes. Importantly, the impacts of climate change on the agricultural sectors extend beyond 
physical impacts to farms but also bring direct and indirect impacts to the overall cultural, social, and economic resilience of 
Indiana’s communities. Therefore, when considering impacts on the agricultural sector in Indiana, climate change-driven 
stressors and disruptions can emerge well outside the geography of the state, nationally and internationally.  

Observed Changes to Indiana’s Climate 
Observational changes in Indiana’s climate are calculated from gridded meteorological data from 1979 to 2021 (period of 
record for the dataset) by partners at Michigan State University and GLISA, the Great Lakes CAP/RISA Team (GLISA).4 A 
summary of the recent historical, observed changes in Indiana’s climate are described as follows: 

Temperature  
• Average annual temperature increased by 2.0°F between 1979 and 2021. 
• Seasonal temperatures increased across all seasons. 
• The change in average temperature between 1979 and 2021 was most extreme in the winter months 

(+2.1°F) and least extreme during the summer months (+0.8°F). 
• Since the late 1800s, minimum temperatures have increased at a faster rate than maximum temperatures 

for all seasons. Winter minimum temperatures have increased at the most rapid rate (+0.3°F/decade).5 

Precipitation  
• Average annual precipitation has risen by 7.3” between 1979 and 2021, with the greatest increases 

observed during the winter (2.8”) and summer (2.1”). 
• Extreme precipitation events (>2.0”) have become more frequent, with an increase of 1.7 days annually 

between 1979 and 2021.  
• The wettest five-year period in Indiana state history was 2015–2019, averaging 47.2 inches per year.6 
• Great Lake levels have risen quite substantially in recent years; a new record was set in 2020, reaching the 

highest levels since 1886.6 
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Table 1. Observed changes in Indiana’s climate based on data from 1979 to 2021. Change represents the linear trend in the observed 
climate variable between 1979 and 2021. 

 Annual 
(Jan – Dec) 

Summer 
(Jun – Aug) 

Fall 
(Sep – Nov) 

Winter 
(Dec – Feb) 

Spring 
(Mar – May) 

 Average Change Average Change Average Change Average Change Average Change 

Temperature 52.3 °F +2.0 °F 73.0 °F +0.8 °F 54.1 °F +1.8 °F 29.9 °F +2.1 °F 52.0 °F +1.9 °F 

Precipitation 43.6” +7.3” 12.7” +2.1” 10.2” +0.5” 8.3” +2.8” 12.4” +2.0” 

Vapor 
Pressure 
Deficit* 

6.1 mb +0.7 mb 9.8 mb +1.4 mb 6.2 mb 0 mb 2.0 mb 0 mb 6.4 mb 0.3 mb 

Extreme 
precipitation 
(days with 
2+” per year) 

1.0 days 
+1.7 

days** 

 
Growing 
Season 
Length 
(frost-free 
days per 
year) 

182.5 
days 

+13 days 

*Vapor pressure deficit (VPD) is an important variable for plant physiology. A higher VPD means that plants will lose more water to the air and dry out more 
rapidly. See page 9 for more information on how VPD relates to changes in relative humidity. 

**This value represents a linear increasing slope in days with extreme precipitation events between 1979 and 2021. The average number of days per year 
went from <1 day per year in 1979 to >1 day per year in 2021. The difference was 1.7 days per year between 1979 and 2021. 1.0 days per year is the average 
value of all years between 1979 and 2021. 

Observed Impacts on Agriculture and Forestry 
• Longer growing seasons and increased temperature provide opportunities to plant alternative varieties of crops and 

trees. 
• Shifting plant hardiness zones, due to increases in the average annual minimum temperatures. 
• Increased crop water demand in recent decades, due largely in part to rising temperatures. 
• There is some push-pull between increasing humidity (reduces demand) and increasing temperatures (increases 

demand). Over the past 30-40 years, the trend has been towards increasing evaporative demand in the Great Lakes 
region.7,8 

• Greater frequency of heat stress (from heat and humidity) on trees, crops, livestock, and farmworkers.9,10 
• Increased risk of damage from extreme events, including drought, severe storms, and flooding. 
• Increased weed, pest, and disease pressure as well as animal pathogens. 
• More erratic spring freeze/thaw cycles that may damage trees and fruit crops, as well as affect insect and pathogen 

survival. 
• Late freeze events are still possible despite a trend towards earlier last spring freeze dates.11 
• Higher production costs and lower yields for some crops.12,13 
• Elevated overnight lows can increase corn respiration rates and shorten the grain filling period, both of which lead to 

a reduction in yield.14,15,16 
• Wetter soils, resulting in delayed agricultural planting, higher erosion, and nutrient loss. 
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Future Climate Change 
Models of future climate indicate that temperatures are projected to continue to warm, precipitation is expected to become 
more variable and extreme, and the growing season is anticipated to continue to lengthen. The climate projections in this 
section are based on the average of 17 different regional climate models.4 Two possible futures are presented:  

• an intermediate scenario in which greenhouse gas emissions peak around mid-century (RCP4.5) and then slowly 
decline; and  

• a very high scenario in which emissions continue to rise throughout the 21st century (RCP8.5).17 

Careful planning and adaptive actions can lower the risks of climate change impacts for producers and the agricultural and 
forestry sectors more broadly. There are many ways to adapt to climate change based on emerging impacts and the needs of 
a particular farm, crop, or community, and some examples are presented below.  

Projected Temperature Change 

All available climate model projections indicate that Indiana can expect to see continued warming in the future, with fewer 
extremely cold nights, more very warm nights, and more very hot days per year (Figure 1, Table 2). Climate models project 
that annual average temperatures in Indiana will increase over historical baselines by 3.1°F to 7.9°F by mid-century (2040-
2059) under a very high emission scenario, and increases may exceed 14.5°F by late century (2080-2099) under the same 
scenario. It is also projected that the duration of hot days (over 86°F) will increase by mid-century.9 

Although these changes are most pronounced at the end of the century and in the high-emissions scenarios, even the 
moderate, mid-century projections indicate major changes in Indiana’s cold and hot-weather climatologies that could have 
important ramifications for agriculture and forestry. 

 
Figure 1. Maps of the historical & projected number of days per year with Tmax above 86°F for a moderate (top) and very high (bottom) 
scenario.9 The axes of the lefthand map denote the latitude (vertical axis) and longitude (horizontal axis). 
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Table 2. Modeled change (compared to the 1979 – 2005 period) in the number of days per year that meet or exceed a specified 
temperature threshold for Indiana. Included below the average change is the range of model projections. 

 Low temp. ≤ 32°F Low Temp. ≥ 80°F High temp. ≥ 86°F High temp. ≥ 95°F 

Mid-century, 
intermediate 

-32.1 days 
(-48.8 to -16.1) 

+1.0 days 
(0.0 to 6.7) 

+82.8 days 
(67.7 to 94.3) 

+12.8 days 
(4.2 to 30.5) 

Mid-century,  
very high 

-36.7 days 
(-55.7 to -17.5) 

+3.0 days 
(0.2 to 17.3) 

+89.8 days 
(73.3 to 102.9) 

+20.6 days 
(6.8 to 50.3) 

Late century,  
intermediate 

-41.7 days 
(-56.8 to -21.8) 

+3.2 days 
(0.0 to 16.3) 

+90.9 days 
(73.5 to 108.3) 

+21.0 days 
(4.1 to 50.7) 

Late century,  
very high 

-65.3 days 
(-84.4 to -40.9) 

+22.2 days 
(2.9 to 60.4) 

+115.3 days 
(93.6 to 132.6) 

+58.8 days 
(23.5 to 101.1) 

What Does This Mean for Agriculture and Forestry? 
Heat 

• Increased heat stress (from heat and humidity) severely impacts farmers and loggers, and animals. Among livestock, 
high heat can decrease meat and milk quality and quantity, and egg production. High heat during the growing season 
may also stress cool season crops like broccoli and cabbage.12,18,19,20 

• Farmworkers who work predominantly outdoors are also particularly vulnerable to heat-related illness. 

• The frequency of short-term and rapid onset drought during the summer is potentially higher due to higher 
temperatures and increased precipitation variability.21 

Soil Impacts 

• Decreased soil moisture during the growing season affects agricultural plant physiology, potentially leading to an 
increased risk of reduced yields or crop losses, but uncertainty about these impacts remains.12,20 Crop genetics and 
field management will be key to mitigating these potential yield losses.  

• Increased soil temperatures affect the appropriate timing and form of fertilizer application. 
o With soils remaining above 50°F later into the fall season and potentially early in the spring, fields are prone 

to nitrogen loss and subsequent water quality impacts following nitrogen applications.22 
o Areas of the state where fall nitrogen applications are effective management will likely shift to spring and/or 

in-season application timings. 

Growing Conditions 

• Warming can be expected to have meaningful impacts on pests in Indiana, through: 
o Reductions in winter kill for important pests.  
o Increases in the reproductive rates and capacity of insect pests.  
o Range expansions bringing new pests and natural enemies into the system. 

• Warming can also be expected to increase the severity and frequency of crop and animal diseases.  
o Crops can become more susceptible to certain diseases (charcoal rot, pod & stem blight, etc.) when under 

stress. 
o Warming may also allow for pathogens more adapted to southern conditions to become more common in 

Indiana.  
o An increase in freezing/thawing cycles also will affect survival of organisms in the soil – for good or bad. 

• Elevated overnight temperatures affect corn development and vegetable crops, negatively impacting yields.20 
• High heat during the growing season may stress cool season crops like lettuce, broccoli, and cabbage.20 
• Prolonged, extreme heat can impact “warm season” crops that still express the C3 photosynthetic pathway like 

tomatoes and peppers by negatively impacting pollination at temperatures above 86°F.23 
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• Reduction in the nitrogen content of forages (grasses & legumes), a key quality for meat and dairy animal nutrition.9 
• Northerly shifts in the optimal growing regions for corn and soybeans, with reductions in yield projected by models in 

Indiana.24 
o There is high model confidence in corn yield reduction. There is more uncertainty in soybean yields by late 

century. 

Adaptation Options  
• Utilize conservation practices, such as cover crops and/or reduced tillage, to increase infiltration and water holding 

capacity while building soil resilience and aggregation. 
o Conservation cropping systems that improve soil health and provide more soil cover (living cover or 

residues) help to keep more water in the soil (absorbs heat and keeps soils cooler in summer) and reduce 
daily soil temperature fluctuations.  

• Choose crop species or varieties that are more suited to future conditions including heat tolerance and water stress. 
• Choose longer maturity corn cultivars to take advantage of longer growing season (potentially increasing yields), or 

plant shorter maturity corn varieties earlier in the season to avoid reproductive stages happening during worst risk of 
drought in later summer (likely to give average, but more consistent yields).25 

• Consider the use of high tunnels in smaller-scale plots to moderate plants’ exposure to extreme temperatures. 
• Explore options to reduce farmworkers’ exposure to high temperatures like providing shade, improved personal 

safety equipment, access to drinking water, and alternative working hours.  
• Monitor for pathogens or insect pests that are currently found further south. Have a conversation with your 

advisor(s) about what pests may be an issue in the current growing season. 
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Precipitation  
Annual precipitation is expected to increase in the future, with the largest seasonal increases likely during spring. Decreases in 
total precipitation and greater variability are projected during the summer. These changes are stronger under the very high 
scenario and for the late 21st century (2080-2099) (Figure 2). 

 
Figure 2. Projected precipitation changes for Indiana, annually and seasonally, in inches based on two different emission scenarios 
(intermediate (RCP4.5) and very high (RCP8.5)). 

What Does This Mean for Agriculture? 
• Winter and spring increases in precipitation can potentially lead to further loss of field and forest workdays, impaired 

root growth and function, and prolonged field wetness.9,26 

• Winter and spring increases in precipitation will lead to further loss and variability in the amount of field workdays 
per year, impaired root growth and function, and prolonged field wetness.20 

• Wetter pastures and paddocks increase susceptibility to animal foot diseases and may impact livestock nutrition 
maintenance schedules and gestational weight.27,28  

• Lower soil moisture, along with higher temperatures, are projected to substantially reduce corn (16-20%) and 
soybean (9-11%) yields in Indiana.9 

• Decreased soil moisture in summer will likely lead to greater crop irrigation demand. 
• Increasing spring and winter precipitation will lead to an increase in spring subsurface flow from tile drains; expected 

to increase by 30-50% by mid-century in Indiana.9 

Adaptation Options  
• Be prepared with farming strategies that help manage too much soil moisture in the spring (such as cool season 

cover crops or improved drainage) and not enough soil moisture during late summer (such as high residue systems, 
drainage water recycling, or controlled drainage structures). 
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• Consider implementing water retention basins to capture water during periods of excess moisture to be used as 
irrigation water during dry periods. 

• In tile drain systems, consider putting gates in the field tile outlets to retain moisture in fields during dry periods. 
• Consider planting earlier in the season with an earlier last frost date, which may be possible in years where the soil 

moisture conditions in the field are not too wet.25 

• Implementing strategies to improve soil health. Increasing soil health by improving soil structure and organic matter 
content will enable the soil to be better able to infiltrate precipitation, increase water-holding capacity, and maintain 
plant-available water during periods of dryness.20 Options include conservation crop rotations, cover crops, and 
reduced tillage. 

• Consider 'redefining the field edge' in perennially flood prone areas by replacing row crops with perennial grasses for 
haying/grazing or native mixes.29,30 

• Consider investing in equipment and/or technologies that reduce soil compaction and optimize planting (e.g., tire 
configuration/width, tracks, controlled field traffic patterns) in shortened planting windows. 

Growing Season Length 
Growing season trends across Indiana since 1950 are variable across the state (Figure 3). Many counties have seen an increase 
of one to a few days per decade; counties with a statistically significant increase in growing season length are in the southern, 
eastern, and north-central regions. This is a result of later first frosts in the fall and an earlier onset of frost-free conditions in 
spring. With the warming winters, it is also projected that plant hardiness zones (based on the lowest temperatures reached 
annually) in Indiana will trend warmer (Figure 4). This is relevant for overwintering perennial crops, such as fruit trees. 

 
Figure 3. Historical changes in average annual growing season length for Indiana counties, 1950-2023, based on gridded Applied Climate 
Information System dataset. The right-hand image displays only those counties with a statistically significant trend (p<0.05).11 Image source: 
Freeze Date Tool, Midwestern Regional Climate Center, https://mrcc.purdue.edu/freeze/freezedatetool.html. Original data source is 
https://www.rcc-acis.org/. 

https://mrcc.purdue.edu/freeze/freezedatetool.html
https://www.rcc-acis.org/
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Figure 4. Historical & projected changes in the plant hardiness zones (based on the coldest minimum temperatures experienced annually) 
for a medium (top) and high (bottom) emission scenario.9 

What Does this Mean for Agriculture? 
• Pests, diseases, and weeds may expand their ranges. Additionally, the number of pest generations per season may 

increase, resulting in a greater impact on forests, crops, or livestock. An increased need for chemical treatments to 
address these impacts may lead to greater pesticide and herbicide resistance and greater input costs for farmers. 
Increased tree loss due to pest damage may increase wildfire risk. 

• Pests, diseases, and weeds may expand their ranges. Additionally, the number of pest generations per season may 
increase, resulting in a greater impact on crops or livestock. 

• An increased need for chemical treatments to address these impacts may lead to greater pesticide and herbicide 
resistance, greater input costs for farmers, and greater environmental exposure to these chemicals.  

• Integrated Pest Management (IPM) strategies, such as habitat modification and biological controls, can serve as 
alternative methods to chemical treatment or can be implemented alongside chemical treatments.  

• Increased tree loss due to pest damage may increase wildfire risk. 
• Longer growing season length may provide additional time for agricultural harvest and other end-of-season 

processes, such as increased post-harvest cover crop growth. 
• Double cropping may become more viable in Indiana with longer growing seasons. 
• Warmer winters increase risk of spring freeze injury by accelerating the deacclimation from dormancy.  
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• Chilling hours for fruit are projected to decrease in the southern portion of Indiana with warming winters. This may 
lead to chilling hour requirements not being met for certain fruit species/varieties.9,31  

• In years where the chilling hour requirement has been met and there is early spring warmth, buds may break before 
the risk of a freeze has passed. The earlier timing of budbreak will make plants more susceptible to freeze damage.20 

• Later first frosts in the fall and earlier frost-free conditions in spring may shorten the winter harvest timber period, as 
well as making it more difficult to harvest some species that primarily inhabit wetter habitats. 

Adaptation Options  
• Plant agricultural crops earlier in the spring (if soil conditions are favorable) or consider options for double or relay 

cropping.29 
• Address pest, weed, and disease issues by diversifying crop rotations, enhancing use of IPM techniques, and planting 

species and varieties that are more adapted to changing conditions.29 
• Consider planting fruit species and cultivars with a lower chilling hour requirement with the projected decrease in 

annual chilling hour accumulation. However, bear in mind that this could lead to trees blooming earlier in years with 
a warmer spring, exposing the fruit to frost/freeze damage. 

Relative Humidity 
Despite increased water vapor in the atmosphere and precipitation, uncertainty remains in whether current trends of relative 
humidity will continue. This uncertainty is due to relative humidity’s dependence on both air temperature and absolute 
moisture content in the air. A larger increase in temperature would decrease relative humidity, and a larger increase in 
absolute moisture content would increase relative humidity. Models indicate that relative humidity is projected to decrease 
annually and across all seasons in Indiana. However, if minimum (nighttime) temperature trends continue to outpace 
maximum (daytime), vapor pressure deficits will not increase, and relative humidity will stay higher.  

What Does this Mean for Agriculture? 

If relative humidity decreases: 

• Plants will be more prone to wilting and stunted growth.  
• Certain animal respiratory viruses may have a longer survival duration. 32 
• Tree mortality may increase, especially for younger trees.26 

If relative humidity increases: 

• Wetness duration may increase leading to enhanced disease potential for crops.33 

• Plants will have a decreased ability to evaporate water (part of the transpiration process) or take up nutrients 
dependent on the flow of water from the soil.34 

• The ability for animals to utilize evaporative cooling will be reduced, increasing the effects of heat stress related 
health and performance issues.35 

Humidity trends have major implications for crop water demand: 

• If daily minimum temps (a good approximation of dew point temps) continue to outpace increases in daily maximum 
temps, vapor pressure deficits will not increase, and crop water demand will not increase. 

• If daily minimum & maximum temps increase at a similar rate in the future, vapor pressure deficits can be expected 
to increase and crop water demand will subsequently increase. 
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Adaptation Options  
• Plant varieties adapted to drier or wetter climates (or those that may withstand high variability) if available (including 

crops, pasture grasses, and tree fruit).29 

• Use of mulch, cover crops, no-till, or reduced tillage to retain soil moisture and reduce soil temperatures during the 
summer.18 

• Where appropriate, establish trees to reduce evaporative water loss from the soil surface. Additionally, soils within 
agroforestry systems are better able to infiltrate and store water, which will be critically important in climates with 
warmer, drier summers.36 

Indiana Climate Change Resources and Extension Programs 

• Farming 4 a Better Climate:  
https://ag.purdue.edu/indiana-state-climate/research/farming-for-a-better-climate/ 

• Indiana Climate Change Impacts Assessment: https://ag.purdue.edu/indianaclimate/agriculture-report/ 

• Conservation Cropping Systems Initiative Soil Health Podcast: https://www.ccsin.org/podcast  
• Indiana State Climate Office: https://ag.purdue.edu/indiana-state-climate/ 
• Purdue Extension Entomology – Fruit: https://extension.entm.purdue.edu/fruit/ 

• Purdue Extension Entomology - Vegetables: https://extension.entm.purdue.edu/veg/ 

• Midwest Vegetable Guide: https://mwveguide.org/ 

• Purdue 4-H – Youth & Entomology: 
https://extension.entm.purdue.edu/radicalbugs/index.php?page=selecting_treatment_strategies 

  

https://ag.purdue.edu/indiana-state-climate/research/farming-for-a-better-climate/
https://ag.purdue.edu/indianaclimate/agriculture-report/
https://www.ccsin.org/podcast
https://ag.purdue.edu/indiana-state-climate/
https://extension.entm.purdue.edu/fruit/
https://extension.entm.purdue.edu/veg/
https://mwveguide.org/
https://extension.entm.purdue.edu/radicalbugs/index.php?page=selecting_treatment_strategies
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