Bringing Fire and Soil Moisture Worlds Together, Together

Timothy Brown

Desert Research Institute, Reno, Nevada

Soil Moisture and Wildfire Prediction Workshop

Albuquerque, NM

29 Apr 2019

The water and fire cycle

The Spokesman-Review: Crews battle a wildfire in the Palomino Valley, on Wednesday, July 5, 2017, near Reno, Nev. (Jason Bean / AP)

The water and fire cycle

Buffelgrass green-up and curing

https://www.usgs.gov/centers/wgsc/science/buffelgrass?qtscience_center_objects=0#qt-science_center_objects

https://www.nps.gov/sagu/learn/nature/buffelgrass.htm

Forest stressor complex

AREA WITH TREE MORTALITY FROM ALL WESTERN BARK BEETLES 2000 – 2016

Source: US Forest Service

The National Fire Danger Rating System 1978/88 version

Source: Matt Jolly, USFS

The National Fire Danger Rating System 2016 version

 Ten Hour
 Hundred Hour
 Thousand Hour

One Hour

Time Lag	Stick Diameter
	(inches/cm)
1 hour	0.16 in / 0.4 cm
10 hour	0.5 in / 1.28 cm
100 hour	1.6 in / 4.0 cm
1000 hour	3 in / 7.62 cm

Nevada fuels status 9/23/18

Nevada fuels 9/23/18 status

Live fuel moisture

Source: Great Basin Predictive Services

Drought and fire

1000-hour dead fuel moisture

Drought and fire

1000-hour dead fuel moisture

Source: McEvoy et al. 2019

Soil moisture proxy for:

- Fine fuel growth
- Fine fuel curing and accelerated drying
- Heavy fuel vegetation stress and drying

Contacts: Kingtse Mo (Kingtse.Mo@noaa.gov) & Li Xu (li.xu@noaa.gov)

GeoTIFF: Undefined value is -999.

(NLDAS)

https://www.cpc.ncep.noaa.gov/products/Drought/Monitoring/smp.shtml

https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/palmer.gif

Generated by NOAA/ESRL/Physical Sciences Division

Water relation to fuel flammability

Water relation to fuel flammability

Fuel Moisture Content (FMC) = Water Weight/Dry Weight

Dead fuels: dry weight is relatively constant, but does change slowly as a function of decomposition

Live fuels: Both the water weight and dry weight changes diurnally, seasonally, and inter-annually

Both quantities of FMC can contribute to flammability and both vary independently over space and time

Drought preconditions fuel flammability

Drought and fire

For consideration

Curr Clim Change Rep (2018) 4:396–406

Temporal scale	Drought indicator/variable	Physical mechanism	Fire response mechanism(s)
Days	Synoptic meteorology	Atmospheric pressure: blocking ridges	Increased PET, VPD: decreased foliar and dead fuel moisture, increased fuel flammability
		Atmospheric pressure: ridge-trough interactions	Lightning, ignition potential; Foehn winds
	Flash drought	Low precipitation	Decreased soil moisture: decreased foliar and dead fuel moisture, increased fuel flammability
		High temperature	Increased PET, VPD: decreased foliar and dead fuel moisture, increased fuel flammability
	Fire weather	High surface winds	Increased PET: decreased foliar and dead fuel moisture, increased fuel flammability
			Increased fire spread
		Low relative humidity	Increased PET, VPD: decreased foliar and dead fuel moisture, increased fuel flammability
	Meteorological drought	Low precipitation	Decreased soil moisture: decreased foliar and dead fuel moisture, Increased fuel flammability
	Hydrological drought	Low runoff	Correlation with decreased soil moisture: decreased foliar and dead fuel moisture, increased fuel flammability
Seasons	Snow drought	Low winter precipitation as snow	Longer snow-free season, decreased soil moisture: decreased foliar and dead fuel moisture, increased fuel flammability
		Early snow melt	Longer snow-free season, decreased soil moisture: decreased foliar and dead fuel moisture, increased fuel flammability
	Global-change-type drought	High temperature for given low precipitation anomaly	Decreased soil moisture: decreased foliar and dead fuel moisture, increased fuel flammability
			Increased PET, VPD: decreased foliar and dead fuel moisture, increased fuel flammability
Years	Ecological drought	Water availability deficit	Drives ecosystems beyond thresholds of vulnerability, impacts ecosystem services, and triggers feedbacks in natural and/or human systems
Decades to centuries	Persistent or frequent seasonal and interannual droughts	Atmosphere/ocean interactions: ENSO, PDO, etc.	Increased (drier) or decreased (wetter) frequency of above events; long term changes in fuel availability and distri- bution

 Table 1
 Temporal scale and mechanisms of fire-related drought

Source: Littell 2018

399

For consideration

12. How are uncontrolled components planned for?

THE NATIONAL INTEGRATED DROUGHT INFORMATION SYSTEM DROUGHT AND WILDLAND FIRE NEXUS (NDAWN) STRATEGIC PLAN: 2018-2022

Improving the utilization of drought information in wildland fire management for ecological health, public health, and firefighter safety

SEPTEMBER 2018

Greetings From Reno!

Fire near Tim's house

